
A simple derivation of the exact wavefunction of a harmonic oscillator with time-dependent

mass and frequency

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 6385

(http://iopscience.iop.org/0305-4470/32/36/303)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 6385–6389. Printed in the UK PII: S0305-4470(99)03988-8

A simple derivation of the exact wavefunction of a harmonic
oscillator with time-dependent mass and frequency

Orion Ciftja
Ames Laboratory, Iowa State University, Ames, IA 50011, USA

Received 5 May 1999, in final form 5 July 1999

Abstract. We present a very simple and efficient method to obtain the exact wavefunction
corresponding to the harmonic oscillator with time-dependent mass and frequency.

1. Introduction

The study of harmonic oscillators with time-dependent frequencies or with time-dependent
masses (or both simultaneously) has attracted considerable interest in the past few years [1–6].
Apart from its intrinsic mathematical interest, the time-dependent harmonic oscillator has
invoked much attention because of its many applications in different areas of physics, such as
quantum optics and plasma physics. For instance, it has been shown [7] that the Hamiltonian
describing the problem of a Fabry–Perot cavity in contact with a heat reservoir assumes the
form of a harmonic oscillator with constant frequency and time-dependent mass.

Such a problem arises naturally from the quantum treatment of the damped harmonic
oscillator and has been studied by the use of a canonical transformation [8] which transforms the
time-dependent mass oscillator to one with a time-dependent frequency. This method produces
an exact solution for the time-dependent Schrödinger equation in both the Schrödinger and the
Heisenberg picture. The advantage of being able to treat particles with time-dependent masses
shows up most obviously in the case of a particle which is decaying and losing mass under the
influence of a time-dependent gravitational potential [9] and also in plasma physics [10].

The case of the harmonic oscillator with constant mass and time-dependent frequency has
also attracted much attention and its exact wavefunction has been obtained [2] by applying a
path-integral method.

Many techniques have been devised to study quantum systems whose Hamiltonians are
explicitly time dependent and among them the path-integral method [11] and the quantum
invariant operator method [1] of Lewis and Riesenfeld (LR) have been particularly successful.
For explicitly time-dependent harmonic oscillators, LR have introduced an important quantum
mechanical invariant and found the exact quantum states in terms of the invariant eigenstates.

Recently, much attention has been dedicated to the most general case of a harmonic
oscillator with time-dependent mass and frequency [3, 5, 6, 12] which constitutes a rather
difficult, but yet one of the few solvable problems in this field. All these treatments are
essentially based on the LR invariant method which, although a powerful tool for the study
of such systems, is not very easy to apply. Within this method the solution of the nonlinear
equation for the parameter entering the LR invariant equation still remains a difficult task.
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Because of such mathematical difficulties associated with the LR method, some results
corresponding to the harmonic oscillator with time-dependent mass and frequency, which have
appeared in the recent literature, do not agree with each other and it seems that a few of them
[3, 12] are not quite correct.

The main purpose of the present paper is to exhibit a new solution of the general problem
of the harmonic oscillator with time-dependent mass and frequency by employing some simple
transformations of variables. The derivation of the exact wavefunction is straightforward and
is obtained with much less effort than other results [6] based on the LR invariant method.

2. The time-dependent harmonic oscillator

The time-dependent Schrödinger equation for the harmonic oscillator with time-dependent
mass and frequency is written as

ih̄
∂

∂t
9(x, t) = Ĥ (t)9(x, t) (1)

with the time-dependent Hamiltonian operator given by

Ĥ (t) = − h̄2

2m(t)

∂2

∂x2 +
1

2
m(t) ω(t)2x2 (2)

wherem(t) is the time-dependent mass,ω(t) is the time-dependent frequency and9(x, t)
is the space- and time-dependent wavefunction which is the solution of the time-dependent
Schr̈odinger equation.

The simplest solution of equation (1) is obtained [13] when both massm(t) = m0 and
frequencyω(t) = ω0 are constant and is given by

9n(x, t) = 1√
2nn!

(
m0ω0

h̄π

)1/4

exp
[−i(n + 1

2) ω0t
]

exp

[
−m0

2h̄
ω0x

2

]
Hn

(√
m0ω0

h̄
x

)
(3)

whereHn(x) = (−1)n exp(x2)(∂n/∂xn)[exp(−x2)] are the Hermite polynomials andn =
0, 1, . . . is a non-negative integer.

To obtain an exact solution of the harmonic oscillator with time-dependent mass and
frequency, let us write the function9(x, t) in terms of a new wavefunction8(x, t) as

9(x, t) = exp[−α(t) x2 − β(t)]8(x, t) (4)

where the time-dependent functionsα(t) and β(t) are to be found later. By substituting
equation (4) into (1) one readily obtains

ih̄
∂

∂t
8(x, t) = − h̄2

2m(t)

∂2

∂x28(x, t) +

[
1

2
m(t) ω(t)2 − 2h̄2

m(t)
α(t)2 + ih̄α̇(t)

]
x28(x, t)

+

[
ih̄β̇(t) +

h̄2

m(t)
α(t)

]
8(x, t) +

2h̄2

m(t)
α(t) x

∂

∂x
8(x, t) (5)

whereα̇(t) andβ̇(t) denote the time derivatives over the functionsα(t) andβ(t).
By introducing a new variabley related tox through the relationx = ρ(t) y whereρ(t)

is a time-dependent function, the function8(x, t) is transformed into a new function8′(y, t)
in such a way that

8(x, t) = 8′
(
y = x

ρ(t)
, t

)
. (6)
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Using the chain rule for partial derivatives we find that in terms of the new variabley the
following quantities are written as

∂

∂t
8(x, t) = ∂

∂t
8′(y, t)− y ρ̇(t)

ρ(t)

∂

∂y
8′(y, t)

and is straightforward to note that

x
∂

∂x
8(x, t) = y ∂

∂y
8′(y, t)

∂2

∂x28(x, t) =
1

ρ(t)2

∂2

∂y28
′(y, t).

In terms of the new function8′(y, t) and the new variabley we can rewrite equation (5)
as

ih̄
∂

∂t
8′(y, t) = − h̄2

2m(t)ρ(t)2
∂2

∂y28
′(y, t)

+

[
1

2
m(t) ω(t)2 − 2h̄2

m(t)
α(t)2 + ih̄α̇(t)

]
ρ(t)2y28′(y, t)

+

[
ih̄β̇(t) +

h̄2

m(t)
α(t)

]
8′(y, t) +

[
ih̄
ρ̇(t)

ρ(t)
+

2h̄2

m(t)
α(t)

]
y
∂

∂y
8′(y, t). (7)

This equation looks very complicated, but it can be enormously simplified by choosing the
auxiliary time-dependent functionsα(t), β(t) andρ(t) in such a way that the coefficients
appearing in front of8′(y, t) and y(∂/∂y)8′(y, t) vanish, and the coefficient in front of
y28′(y, t) is equal to 1/[2m(t)ρ(t)2].

By combining these results we can easily find thatρ(t) must satisfy the second-order
differential equation

ρ̈(t) +
ṁ(t)

m(t)
ρ̇(t) + ω(t)2ρ(t) = 1

m(t)2ρ(t)3
(8)

whereα(t) andβ(t) are given in terms ofρ(t) as

α(t) = −i
m(t)

2h̄

ρ̇(t)

ρ(t)
(9)

and

β̇(t) = i
h̄

m(t)
α(t) = 1

2

ρ̇(t)

ρ(t)
. (10)

These transformations and the conditions put on the auxiliary time-dependent functions allow
us to write equation (7) as

ih̄
∂

∂t
8′(y, t) = − h̄2

2m(t)ρ(t)2
∂2

∂y28
′(y, t) +

y2

2m(t)ρ(t)2
8′(y, t) (11)

whereρ(t) is the only auxiliary time-dependent function that appears in equation (11).
A simplification of equation (11) is readily achieved by introducing the new time variable

τ =
∫ t

0

dt ′

m(t ′)ρ(t ′)2
(12)

where one transforms equation (11) into a simpler equation of the form

ih̄
∂

∂τ
8′(y, τ ) = − h̄

2

2

∂2

∂y28
′(y, τ ) +

1

2
y28′(y, τ ). (13)



6388 O Ciftja

It is not difficult to recognize that equation (13) corresponds to the harmonic oscillator with
constant mass and frequency described from equations (1) and (2) withm(t) = m0 = 1 and
ω(t) = ω0 = 1 and its exact solution is found in equation (3). As a final step, substituting
equations (9) and (10) into equation (4) and returning to the original variablesx and t , one
obtains an exact solution of equation (1) for the harmonic oscillator with time-dependent mass
and frequency in the form

9n(x, t) = 1√
2nn!

(
1

h̄πρ(t)2

)1/4

exp

[
−i
(
n + 1

2

) ∫ t

0

dt ′

m(t ′)ρ(t ′)2

]
× exp

[
i
m(t)

2h̄

(
ρ̇(t)

ρ(t)
+

i

m(t)ρ(t)2

)
x2

]
Hn

(√
1

h̄

x

ρ(t)

)
(14)

where the time-dependent functionρ(t) should satisfy equation (8).
For the general case of the harmonic oscillator with time-dependent mass and frequency,

the exact Schr̈odinger wavefunction given in equation (14) agrees with that of Pedrosa [6]
obtained using the LR invariant method. It also agrees with that of Jiet al [5] obtained using the
Heisenberg picture approach and the LR invariant method by simply settingρ(t)2 = g(t)/ωI .
As pointed out recently [6], our final result is different from that of Dantaset al [3] which
is not correct for the general case under consideration. It also differs from that of Kim [12]
obtained using the LR invariant method for a specific form of the time-dependent mass and
frequency and that misses some time-dependent phase factor. Note that when both the mass
and frequency are constant,m(t) = m0 andω(t) = ω0 thenρ(t) = ρ0 whereρ0 = 1/

√
m0ω0

is a particular solution of equation (8). As a result the solution given in equation (14) becomes
the solution of the Schrödinger equation for the harmonic oscillator with constant mass and
frequency already given in equation (3).

Since each9n(x, t) satisfies the time-dependent Schrödinger equation, the general
solution of equation (1) may be written as

9(x, t) =
∞∑
n=0

Cn9n(x, t) (15)

where theCn are constants. If the initial state of the system att = 0 is one of the stationary
states of the harmonic oscillator, then equation (8) should be solved with the initial conditions
ρ(t = 0) = 1/

√
m(t = 0) ω(t = 0) and ρ̇(t = 0) = 0 that correspond to the correct

wavefunction9n(x, t = 0) in equation (14). The9n(x, t = 0) wavefunction is the eigenstate
of the instantaneous Hamiltonian̂H(t = 0) where one can write

Ĥ (t = 0)9n(x, t = 0) = En(t = 0)9n(x, t = 0) (16)

whereEn(t = 0) = h̄ω(t = 0)(n + 1
2) is the instantaneous energy eigenvalue. The time

evolution of the initial state9n(x, t = 0) is found by solving the time-dependent Schrödinger
equation and the general solution is given by equation (15). Since the Hamiltonian is time
dependent, these solutions do not enjoy the same privileged status as having constant energy
eigenvalues as in the time-independent Hamiltonian case.

3. Summary

The explicitly time-dependent quantum systems have been a long-standing mathematical
problem not yet completely solved in general. A good example of such a system that has
many applications in different areas of physics is the harmonic oscillator with time-dependent
mass and frequency (the most general case). The most preferred tool for studying these systems
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is the generalized LR invariant method [1], which is based on the idea of constructing quantum
invariants and then to find the exact solution of the time-dependent Schrödinger equation
in terms of the invariant eigenstates. Since then numerous variants and applications of the
LR invariant method have been introduced and used. After lengthy calculations, the exact
solution for the harmonic oscillator with time-dependent mass and frequency was obtained
recently [5, 6] both in the Schrödinger and Heisenberg representation. These derivations were
based on the LR invariant method, which is not easy to apply and mathematically is rather
challenging.

In this paper we apply a more intuitive approach to solve the time-dependent Schrödinger
equation for the harmonic oscillator with time-dependent mass and frequency by using only
simple transformations of variables. Our exact solution is in agreement with that of Pedrosa
[6], but was obtained quite differently and with much less effort. We feel that the present paper
may stimulate other efforts to search for simpler treatments and solutions of similar problems
which until now have been treated only by complicated methods.
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